Disruption of putative regulatory loci in Listeria monocytogenes demonstrates a significant role for Fur and PerR in virulence.

نویسندگان

  • Rosemarie B Rea
  • Cormac G M Gahan
  • Colin Hill
چکیده

The ability to adapt to adverse environmental conditions encountered in food and during host infection is a sine qua non for a successful Listeria monocytogenes infection. This ability is likely to depend on complex regulatory pathways controlled by a number of key regulators. We utilized the pORI19 plasmid integration system to analyze the role of six putative regulatory loci in growth under suboptimal environmental conditions and during murine infection. Disruption of loci encoding a topoisomerase III (lmo2756), a putative methyltransferase (lmo0581), and a regulator of the MarR family (lmo1618) revealed roles for the methyltransferase and the MarR regulator in growth under environmental stress conditions. However, plasmid integration into these loci had no impact on virulence potential in the murine model of infection. Disruption of the alternative sigma factor Sigma-H resulted in a mutant that demonstrated reduced growth potential in minimal medium. Murine studies indicated a minor role for this sigma factor in the infectious process. Strikingly, disruption of both perR and fur loci resulted in mutants that are significantly affected in virulence for mice, with the fur mutant demonstrating the greatest reduction in virulence potential. Both perR and fur mutants demonstrated increased resistance to hydrogen peroxide and the fur mutant was sensitive to low-iron conditions. The virulence defect of both fur and perR mutants could be rescued by iron-overload after esculetin treatment of mice, suggesting that the in vivo role of these gene products is to procure iron for bacterial growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Putative P-Type ATPase Required for Virulence and Resistance to Haem Toxicity in Listeria monocytogenes

Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L. monocytogenes in a m...

متن کامل

Listeria monocytogenes PerR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence.

Deletion of perR in Listeria monocytogenes results in a small-colony phenotype (DeltaperRsm) that is slow growing and exhibits increased sensitivity to H2O2. At a relatively high frequency, large-colony variants (DeltaperRlg) arise, which are more resistant to H2O2 than the wild-type and ultimately dominate the culture. Transcriptional analysis revealed that the kat gene (catalase) is up-regula...

متن کامل

Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes.

lisRK encodes a two-component regulatory system in the food pathogen Listeria monocytogenes LO28. Following identification of the operon in an acid-tolerant Tn917 mutant, a deletion in the histidine kinase component was shown to result in a growth phase variation in acid tolerance, an ability to grow in high ethanol concentrations, and a significant reduction in virulence.

متن کامل

Transcriptomic response of Listeria monocytogenes to iron limitation and Fur mutation.

Iron is required by almost all bacteria, but concentrations above physiological levels are toxic. In bacteria, intracellular iron is regulated mostly by the ferric uptake regulator, Fur, or a similar functional protein. Iron limitation results in the regulation of a number of genes, especially those involved in iron uptake. A subset of these genes is the Fur regulon under the control of Fur. In...

متن کامل

OrfX, a Nucleomodulin Required for Listeria monocytogenes Virulence

Listeria monocytogenes is a bacterial pathogen causing severe foodborne infections in humans and animals. Listeria can enter into host cells and survive and multiply therein, due to an arsenal of virulence determinants encoded in different loci on the chromosome. Several key Listeria virulence genes are clustered in Listeria pathogenicity island 1. This important locus also contains orfX (lmo02...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 2004